проект:    архи.всё -> энтропия
   Chaos Theory - Теория хаоса
Центр Исследования Хаоса Энтропия
Архитектурный журнал
прессслужба


Лекции
Строительство
 

Изучение комплексных и динамических систем для выявления закономерностей порядка (нехаоса) из очевидных хаотичных явлений. Объяснение Chaos Theory (Теория хаоса) Lorentz ('60) и Poincare.

Что такое Chaos Theory - Теория хаоса? Описание

Метод Chaos Theory (Теория хаоса) Lorentz и Poincare - метод, который можно использовать для изучения комплексных и динамических систем для выявления закономерностей порядка (нехаоса) из очевидных хаотичных явлений.

«Chaos Theory (Теория хаоса) - качественное изучение неустойчивого апериодического поведения в детерминистических нелинейных динамичных системах » (Kellert, 1993, P. 2). Апериодическое поведение наблюдается, когда нет ни одной переменной, описывающей состояние системы, которое испытывает регулярное повторение значений. Неустойчивое апериодическое поведение очень сложно: оно никогда не повторяется и проявляет эффект любого небольшого возмущения.

Согласно сегодняшней математической теории хаотичная система характеризуется «чувствительностью к начальным условиям». Другими словами, для того чтобы предсказать будущее состояние системы с определенностью, вам необходимо знать начальные условия с огромной точностью, в виду того что ошибки увеличиваются быстро из-за даже самой небольшой неточности.

Поэтому погоду настолько трудно прогнозировать. Теория также применялась к экономическим циклам, динамике животных популяций, в движении текучей среды, области планетарных орбит, электрического тока в полупроводниках, медицинских состояний (например, эпилептический припадок) и моделировании гонки вооружений.

Во 1960-х Edward Lorenz, метеоролог из MIT, работал над проектом по имитации закономерностей погоды на компьютере. Он случайно столкнулся с эффектом бабочки (butterfly effect ) после того, как отклонения в вычислениях на тысячные доли в значительной степени меняли процесс имитации. Эффект бабочки показывает, как изменения небольшого маштаба могут оказывать влияние на вещи большого масштаба. Это классический пример хаоса, где небольшие изменения могут повлечь большие изменения. Бабочка, хлопая своими крыльями в Гон Конге, может изменить закономерности торнадо в Техасе.

Chaos Theory (Теория хаоса) рассматривает организации/бизнес группы как сложные, динамические, нелинейные, созидательные и далекие от состояния равновесия системы . Их будущие результаты нельзя предсказать на основе прошлых и текущих событий и действий. В состоянии хаоса, организации одновременно ведут себя непредсказуемо (хаотично) и систематично (упорядоченно).

 

Происхождение Теории хаоса. История

Ilya Prigogine, лауреат Нобелевской премии, показал, что сложные структуры могут происходить от более простых. Это как порядок исходящий из хаоса. Henry Adams ранее описал данное явление цитатой «Chaos often breeds life, when order breeds habit». Однако Henri Poincare был настоящим «отцом-основателем теории хаоса» .

Планета Нептун была открыта в 1846 и была предсказана на основе наблюдений отклонений в орбите Урана. Король Норвегии Oscar II был готов дать награду любому, кто бы смог доказать или опровергнуть то, что солнечная система устойчива. Poincare предложил свое решение, но когда его друг нашел ошибку в его вычислениях, награду отобрали до тех пор, пока он не смог придумать новое решение.

Poincare пришел к выводу, что решения не было. Даже законы Isaac Newton не помогали в решении этой огромной проблемы. Poincare пытался найти порядок в системе, где его не было. Теория хаоса была сформулирована в 1960-х. Значительная и более практическая работа была проделана Edward Lorenz в 1960-х. Название хаос было придуманно Jim Yorke , ученым в области прикладной математики в университете Maryland (Ruelle, 1991).

 

Вычисление Chaos Theory (Теория хаоса) Формула

В применении Теории хаоса, одиночная переменная x (n) = x (t0 + nt) с начальным временем, t0, и временем задержки, t, обеспечивает n-мерное пространство, или фазовое пространство, которое представляет собой все многомерное пространство состояния системы; может потребоваться до 4 измерений для того, чтобы представить фазовое пространство хаотичной системы. Таким образом, в течение длительного периода времени, анализируемая система выработает закономерности в рамках нелинейного временного ряда, что можно использовать для предсказания будущих состояний (Solomatine et al, 2001).

 

  . страницы:
1   
2  
   
   
   
  . содержание:
       архи. трансформер ( развернуть и cвернуть )
      
  . архи.поиск:
  . архи.другое:
Эффект Ёлки
  . архи.дизайн:
 
  Семён Расторгуев ©  рaдизайн ©


    © Amita Paul

    © 2007—2015, проект АрхиВсё,  ссылайтесь...
Всё.