проект:    архи.всё -> энтропия
   Энтропия / entropнa
Центр Исследования Хаоса Энтропия
Архитектурный журнал
прессслужба


Лекции
Строительство

 

Энтропия (от греч. entropнa — поворот, превращение), понятие, впервые введенное в {термодинамике} для определения меры необратимого рассеяния энергии. Э. широко применяется и в других областях науки: в {статистической физике} как мера вероятности осуществления какого-либо макроскопического состояния; в теории информации как мера неопределенности какого-либо опыта (испытания), который может иметь разные исходы. Эти трактовки Э. имеют глубокую внутреннюю связь. Например, на основе представлений об информационной Э. можно вывести все важнейшие положения статистической физики.

 

  В термодинамике понятие «Э.» было введено Р. {Клаузиусом} (1865), который показал, что процесс превращения теплоты в работу следует общей физической закономерности — {второму началу термодинамики}. Его можно сформулировать строго математически, если ввести особую функцию состояния — Э.

 

  Так, для термодинамической системы, совершающей квазистатически (бесконечно медленно) циклический процесс, в котором система последовательно получает малые количества теплоты dQ при соответствующих значениях абсолютной температуры Т, интеграл от «приведенного» количества теплоты dQ/ Т по всему циклу равен нулю

 

(т. н. равенство Клаузиуса).

 

  Это равенство, эквивалентное второму началу термодинамики для равновесных процессов, Клаузиус получил, рассматривая произвольный циклический процесс как сумму очень большого, в пределе бесконечного, числа элементарных обратимых {Карно циклов}. Математически равенство Клаузиуса необходимо и достаточно для того, чтобы выражение

 

dS = dQ/T           (1)

 

представляло собой полный дифференциал функции состояния S, названное «Э.» (дифференциальное определение Э.). Разность Э. системы в двух произвольных состояниях А и В (заданных, например, значениями температур и объемов)

 

  (интегральное определение Э.). Интегрирование здесь ведется вдоль пути любого квазистатического процесса, связывающего состояния А и В, при этом, согласно равенству Клаузиуса, приращение Э. DS = SB — SA не зависит от пути интегрирования.

 

  Т. о., из второго начала термодинамики следует, что существует однозначная функция состояния S, которая при квазистатических адиабатных процессах (dQ = 0) остаётся постоянной. Процессы, в которых Э. остаётся постоянной, называются изоэнтропийными. Примером может служить процесс, широко используемый для получения низких температур, — адиабатное размагничивание (см. {Магнитное охлаждение}). При изотермических процессах изменение Э. равно отношению сообщенной системе теплоты к абсолютной температуре. Например, изменение Э. при испарении жидкости равно отношению теплоты испарения к температуре испарения при условии равновесия жидкости с её насыщенным паром.

 

  Согласно {первому началу термодинамики} (закону сохранения энергии), dQ = dU+pdV, т. е. сообщаемое системе количество теплоты равно сумме приращения внутренней энергии dU и совершаемой системой работы pdV, где р — давление, V — объём системы. С учётом первого начала термодинамики дифференциальное определение Э.

 

  откуда следует, что при выборе в качестве независимых переменных внутренней энергии U и объёма V частные производные Э. связаны с абсолютной температурой и давлением соотношениями

 

  Эти выражения представляют собой {уравнения состояния} системы (первое — калорическое, второе — термическое). Уравнение (4) лежит в основе определения {абсолютной температуры} (см. также {Температура}, {Температурные шкалы}).

 

  Формула (2) определяет Э. лишь с точностью до аддитивной постоянной (т. е. оставляет начало отсчёта Э. произвольным). Абсолютное значение Э. позволяет установить {третье начало термодинамики}, или Нернста теорему: при стремлении абсолютной температуры к нулю разность DS для любого вещества стремится к нулю независимо от внешних параметров. Поэтому: Э. всех веществ при абсолютном нуле температуры можно принять равной нулю (эту формулировку теоремы Нернста предложил в 1911 М . {Планк}). Основываясь на ней, за начальную точку отсчёта Э. принимают So = 0 при Т = 0.

 

  Важность понятия Э. для анализа необратимых (неравновесных) процессов: также была показана впервые Клаузиусом. Для необратимых процессов интеграл от приведённой теплоты dQ / Т по замкнутому пути всегда отрицателен

 

  ( т. н. неравенство Клаузиуса).

 

  Это неравенство — следствие теоремы Карно: кпд частично или полностью необратимого циклического процесса всегда меньше, чем кпд обратимого цикла.

  поэтому Э. адиабатически изолированной системы при необратимых процессах может только возрастать.

 

  Т. о., Э. определяет характер процессов в адиабатической системе: возможны только такие процессы, при которых Э. либо остаётся неизменной (обратимые процессы), либо возрастает (необратимые процессы). При этом не обязательно, чтобы возрастала Э. каждого из тел, участвующего в процессе. Увеличивается общая: сумма Э. тел, в которых процесс вызвал изменения.

 

  Термодинамическому равновесию адиабатической системы соответствует состояние с максимумом Э. Энтропия может иметь не один, а несколько максимумов, при этом система будет иметь несколько состояний равновесия. Равновесие, которому соответствует наибольший максимум Э., называется абсолютно устойчивым (стабильным). Из условия максимальности Э. адиабатические системы в состоянии равновесия вытекает важное следствие: температура всех частей системы в состоянии равновесия одинакова.

 

  Понятие «Э.» применимо и к термодинамически неравновесным состояниям, если отклонения от термодинамического равновесия невелики и можно ввести представление о локальном термодинамическом равновесии в малых, но ещё макроскопических объёмах. Такие состояния можно охарактеризовать термодинамическими параметрами (температурой, давлением и т. д.), слабо зависящими от пространственных координат и времени, а Э. термодинамически неравновесного состояния определить как Э. равновесного состояния, характеризующегося теми же значениями параметров. В целом Э. неравновесной системы равна сумме Э. её частей, находящихся в локальном равновесии.

 

  {Термодинамика неравновесных процессов} позволяет более детально, чем классическая термодинамика, исследовать процесс возрастания Э. и вычислить количество Э., образующейся в единице объёма в единицу времени вследствие отклонения системы от термодинамического равновесия — {производство энтропии}. Производство Э. всегда положительно и математически выражается квадратичной формой от градиентов термодинамических параметров (температуры, гидродинамической скорости или концентраций компонентов смеси) с коэффициентами, называемыми кинетическими (см. {Онсагера теорема}).

  . страницы:
1   
2  
>  
   
   
  . содержание:
       архи. трансформер ( развернуть и cвернуть )
      
  . архи.поиск:
  . архи.другое:
проект Которосль
  . архи.дизайн:
 
  Семён Расторгуев ©  рaдизайн ©


    © М. X. Карапетьянц


    © 2007—2015, проект АрхиВсё,  ссылайтесь...
Всё.